- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bolivar_Rodriguez, Oswaldo David (1)
-
Cerra, Daniele (1)
-
Lee, Chengfa Benjamin (1)
-
Muller‐Karger, Frank E (1)
-
Murray, Tylar (1)
-
Peralta_Brichtova, Ana Carolina (1)
-
Roca, Mar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite providing many valuable ecosystem services, seagrasses are a threatened habitat and their global distribution is not fully known. For example, Venezuela lacks a national seagrass map. An established regional mapping approach for seagrass exists for the Google Earth Engine (GEE) platform, but requires a long time window to obtain sufficient data to overcome cloud and other challenges. Recently, GEE has released a Cloud Score+ quality band product for the purpose of cloud masking. Cloud masking could potentially reduce the time window needed for a representative multitemporal composite, which would allow for temporal analyses. We compare the performance of Cloud Score+ derived products against previously established multitemporal image composites acquired in different time ranges, and the ACOLITE‐processed single image composite. The Sentinel‐2 (S2) Level‐1C (L1C) imagery for the whole Venezuelan coastline was processed following three different approaches: (a) using a multitemporal composition of the full S2 L1C archive available and processed in GEE using the Dark Object Subtraction; (b) integrating Cloud Score+ data set into the previous approach; and (c) using a single‐image offline approach applying ACOLITE atmospheric correction. Additional raster features were generated and a two‐step classification approach was performed with five classes, namely sand, seagrass, turbid water, deep water, and coral, and bootstrapped 20 times. Quantitatively, the performance within the Cloud Score+ derived products were largely similar. While the full archive approach had the best quantitative results, the ACOLITE approach produced the best maps qualitatively. With this, we produced the first national seagrass map for Venezuela.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
